AutoML CI/CD/CT: Continuous Training and Deployment Pipeline

Contents

  • Introduction
  • Setup Guide
  • Pipeline Overview
  • YOLO Prelabeling
  • Grounding DINO Prelabeling
  • Matching Logic
  • Human-in-the-Loop
  • Augmentation
  • Training
  • Distillation
  • Quantization
  • File Cleaning and Archiving
  • Unit Tests
  • Database Schema Overview
  • Code Reference
    • Prelabeling Modules
    • Human-in-the-Loop Module
    • Augmentation
    • Training
    • Distillation
    • Quantization
    • File Cleaning & Archiving
    • Utility Scripts
AutoML CI/CD/CT: Continuous Training and Deployment Pipeline
  • Code Reference
  • View page source

Code Reference

These pages document the core Python modules that power the AutoML wildfire pipeline.

  • Prelabeling Modules
    • YOLO Prelabeling
    • Grounding DINO Prelabeling
    • Matching Logic
  • Human-in-the-Loop Module
    • export_versioned_results()
    • import_tasks_to_project()
    • run_human_review()
    • setup_label_studio()
    • transform_reviewed_results_to_labeled()
  • Augmentation
    • augment_dataset()
    • augment_images()
    • build_augmentation_transform()
  • Training
    • find_latest_model()
    • load_train_config()
    • train_model()
  • Distillation
    • build_optimizer_and_scheduler()
    • calculate_gradient_norm()
    • freeze_layers()
    • head_features_decoder()
    • load_checkpoint()
    • load_models()
    • log_training_metrics()
    • prepare_dataset()
    • save_checkpoint()
    • save_final_model()
    • start_distillation()
    • train_epoch()
    • train_loop()
  • Quantization
    • fp16_quantization()
    • imx_quantization()
    • onnx_quantization()
    • quantize_model()
  • File Cleaning & Archiving
    • clean_pipeline_workspace()
  • Utility Scripts
    • create_data_yaml()
    • create_distill_yaml()
    • create_quantize_yaml()
    • detect_device()
    • draw_yolo_bboxes()
    • load_config()
    • prepare_quantization_data()
    • prepare_training_data()
Previous Next

© Copyright 2025, Elshaday Yoseph, Nhan Tien Nguyen, Rongze Liu and Sepehr Heydarian.

Built with Sphinx using a theme provided by Read the Docs.